
TAME: A PVS Interface to Simplify Proofs for Automata Models �

Presented at UITP 98, Eindhoven, Netherlands, July 13-15, 1998

Myla Archer, Constance Heitmeyer, and Steve Sims
Code 5546, Naval Research Laboratory, Washington, DC 20375

farcher, heitmeyer, simsg@itd.nrl.navy.mil

Abstract

Although a number of mechanical provers have been introduced and applied widely by academic researchers,
these provers are rarely used in the practical development of software. For mechanical provers to be used more
widely in practice, two major barriers must be overcome. First, the languages provided by the mechanical
provers for expressing the required system behavior must be more natural for software developers. Second,
the reasoning steps supported by mechanical provers are usually at too low and detailed a level and therefore
discourage use of the prover. To help remove these barriers, we are developing a system called TAME, a
high-level user interface to PVS for specifying and proving properties of automata models. TAME provides
both a standard speci�cation format for automata models and numerous high-level proof steps appropriate
for reasoning about automata models. In previous work, we have shown how TAME can be useful in proving
properties about systems described as Lynch-Vaandrager Timed Automata models. TAME has the potential
to be used as a PVS interface for other speci�cation methods that are specialized to de�ne automata models.
This paper �rst describes recent improvements to TAME, and then presents our initial results in using TAME
to provide theorem proving support for the SCR (Software Cost Reduction) requirements method, a method
with a wide range of other mechanized support.

1 Introduction

A good theorem prover interface has several goals. At the �rst, most immediate level, an interface should be
designed to make the customary interactions with the theorem prover as convenient as possible. For example,
the interface should make it easy and convenient to display known facts (such as theories and lemmas) [19]
and should provide automated support for selecting applicable proof rules [21, 20]. It should also facilitate
the selection of proof rules, lemmas to apply, expressions inside a proof goal to be used as instantiations,
and so on. At a second, somewhat deeper, level, an interface should provide supplementary services in the
theorem prover itself. For example, a user should be able to add annotations to proofs [13] or to obtain
human-understandable proof scripts [5]. At a third, even deeper, level, an interface should provide derived
proof rules that allow the user to reason in familiar ways, e.g., using his favorite logic and syntax. Isabelle
[15, 14] is designed particularly to support such interfaces, but any \programmable" prover can support
them. For example, a proof assistant for the duration calculus has been built on top of PVS [18].

We are developing a tool called TAME (Timed Automata Modeling Environment) [1, 3, 2] that provides
interface features at both the second and third levels for PVS (Prototype Veri�cation System) [17]. In
particular, TAME supports reasoning about automata models by providing specialized PVS proof steps that
are appropriate for proving properties of such models and that automatically annotate both proof goals and
saved proofs with meaningful labels and comments. Currently, TAME is comprised of these specialized proof
steps together with a set of standard theories and automata templates upon which the steps rely, and in
itself has no interface features at the �rst level. However, we have recently investigated the integration of
TAME into a set of tools called the SCR toolset [9, 6, 7]. The SCR tools are designed to support editing and
performing various kinds of analysis on requirements speci�cations of control system software. Once TAME
has been fully integrated into the SCR toolset, the user who wishes to apply TAME to an SCR speci�cation
will have �rst-level interface support, including the extensive interface support already provided by the SCR
tools. Ultimately, we also plan to provide direct �rst-level interface support for TAME.

Our goals in developing TAME are somewhat di�erent from the goals of the developers of the duration
calculus assistant. Rather than supporting a particular logic, TAME supports proof steps \natural" to
humans reasoning about automata models [2]. To the extent feasible, TAME hides the the raw PVS logic
from the user who is proving properties of automata, since interacting with PVS in its \raw" form has its
di�culties. For example:

� Formula numbers may be needed, e.g., in skolemization or instantiation; this can lead to non-portability
of proofs or di�culty in de�ning generic strategies.

�This work is funded by the O�ce of Naval Research. URLs for the authors are
http://www.itd.nrl.navy.mil/ITD/5540/personnel/farcher,heitmeyerg.html

1

� Rather obscure proof steps, e.g., the APPLY-EXTENSIONALITY rule, are occasionally needed to
perform reasoning that is \obvious" to a human.

� Quanti�ed formulae may need as instantiations complex, sometimes multi-line, expressions that are
cumbersome to supply using the standard PVS interface.

� Proofs are often structured more for the needs of the prover than for the needs of the human construct-
ing the proof. For example, splitting an hypothesis can produce several proof goals whose signi�cance
is hard to understand, and require the user to provide obscure proof steps. This is particularly a
problem when, as often happens, the split hypothesis is an implication and the user's arrival at the
later proof goal or goals is delayed in time.

� Many proof steps provided by raw PVS are either too small or too large when compared with reasoning
steps natural to a human. Proofs that require many small steps become quite tedious. When a large
step involving the PVS decision procedures is used in a proof, the signi�cance of resulting subgoals (if
the step does not complete the proof) is obscure.

The problems listed above are not for the most part peculiar to PVS. They or their analogues are likely to
arise with any mechanical theorem prover. However, these di�culties demonstrate why following a more
natural style of reasoning in PVS requires improvements to the PVS interface.

As indicated in [2], we have successfully de�ned and applied TAME proof steps which are more \natural"
for humans than those provided directly by PVS. An important reason for our success is that TAME is an
interface specialized for particular proof styles and particular models. However, certain barriers prevented
us from doing more. Recent enhancements to PVS, soon to be incorporated in the general PVS release
[16], remove some of these barriers and allow more sophisticated proof steps that avoid the di�culties listed
above. The enhancements allow us to provide more information to the user about the proof goals during the
course of a proof and to automatically provide better documentation in PVS proof scripts.

We believe that specialized interfaces such as TAME will encourage the more widespread use of theorem
provers in practical software development. Our experience in developing TAME suggests that adding cer-
tain capabilities to existing general theorem proving systems can encourage the development of specialized
interfaces for these provers.

The remainder of this paper is organized as follows. Section 2 reviews PVS, timed and non-timed au-
tomata, TAME, and SCR. Section 3 describes in detail the improvements to TAME made possible by the
PVS enhancements. Section 4 provides examples that illustrate the new features of TAME. Section 5 dis-
cusses how TAME has been customized to support SCR automata models, and the progress we have made
in integrating TAME into the SCR toolset. Finally, Section 6 discusses some issues that arise in developing
specialized interfaces for PVS and other provers and our future plans for TAME.

2 Background

2.1 PVS
PVS [17] is a higher order logic speci�cation and veri�cation environment developed by SRI. Proof steps
in PVS are either primitive steps or strategies de�ned using primitive proof steps, applicative Lisp code,
and other strategies. Strategies may be built-in or user-de�ned. PVS's support for user-de�ned strategies
makes it possible to implement specialized prover interfaces such as TAME on top of PVS. Recently, several
enhancements to PVS have been developed at SRI. These include new features better supporting specialized
interfaces. The new features include support for labeling formulae appearing in proof goals, support for doc-
umenting proof structure and proof steps (both interactively and in proof scripts) through comments, and
the availability of certain �ne-grained proof steps. The addition of some new access functions and documen-
tation allows computations based on the internal data structures maintained by PVS. These enhancements,
which will ultimately become standard features of PVS, have led to major improvements in TAME.

2.2 LV Timed Automata and IO Automata
An LV timed automaton is a very general automaton, i.e., a labeled transition system that incorporates
the notions of current time and timed transitions. An automaton need not be �nite-state: for example,
the state can contain real-valued information, such as the current time, the water level in a boiler, velocity
and acceleration of a train, and so on. LV timed automata can have nondeterministic transitions; this is
particularly useful for describing how real-world quantities change as time passes, given upper bounds on
their rate of change.

The following de�nition of timed automaton, based on the de�nitions in [8], was used in our case study of a
deterministic timed automaton [1]. A timed automaton A consists of �ve components: (1) states(A), a (�nite
or in�nite) set of states, (2) start(A) � states(A), a nonempty (�nite or in�nite) set of initial states, (3) a
mapping now from states(A) to R�0, the non-negative real numbers, (4) acts(A), a set of actions (or events),

2

which include special time-passage actions �(�t), where �t is a positive real number, and non-time-passage
actions, and (5) steps(A) : states(A)� acts(A)! states(A), a partial function that de�nes the possible steps
(i.e., transitions). This de�nition describes a special case of LV timed automata that requires the next-state
relation, steps(A), to be a function. Careful use of the Hilbert choice operator �, allows us to use the same
basic de�nition in the nondeterministic case as well [3]. The de�nition of IO automata is similar, except that
it has no references to time.

Actions (or events) may at any point be enabled or disabled. The typical speci�cation of an LV timed
automaton or an IO automaton describes the actions in terms of preconditions under which they are enabled,
and e�ects on the state. Below, we refer to these preconditions as speci�c preconditions; other, uniformly
applied components of the full precondition may also exist, such as general timing constraints in a timed
automaton. The transitions (or steps) of an automaton correspond to the state changes induced by enabled
actions. The reachable states of an automaton are those states that can be reached from an initial state via
a sequence of zero or more transitions.

The properties of automata that one wants to prove fall into three classes: (1) state invariants, i.e.,
properties of all reachable states, which are typically proved by induction; (2) simulation relations; and (3)
ad hoc properties of certain execution sequences. Proofs in both (1) and (2) have a standard structure with
a base case involving initial states and a case for each possible action. They are thus especially good targets
for mechanization. The proof examples in this paper all fall into class (1).

2.3 TAME
TAME provides a standard template for specifying automata, a set of standard theories, and a set of standard
PVS strategies. The TAME template, originally intended for specifying LV timed automata, provides a
standard organization for de�ning an automaton. To de�ne either a timed or non-timed automaton, the user
supplies the following six components: (1) declarations of the non-time actions, (2) a type for the \basic
state" (usually a record type) representing the state variables, (3) any arbitrary state predicate that restricts
the set of states (the default is true), (4) the preconditions for all transitions, (5) the e�ects of all transitions,
and (6) the set of initial states. The user may optionally supply declarations of important constants, an
axiom listing any relations assumed among the constants, and any additional declarations or axioms desired.

To support mechanical reasoning about automata using proof steps that mimic human proof steps, we have
constructed a set of standard strategies using PVS, and included these as part of TAME. These strategies are
based on the set of standard theories and certain template conventions. For example, the induction strategy,
which is used to prove state invariants, is based on a standard automaton theory called machine. To
reason about the arithmetic of time, we have developed a special theory called time thy and an associated
simpli�cation strategy called TIME ETC SIMP for time values that are either non-negative real values
or 1. The important template conventions include a standard naming scheme and a standard format for
lemmas of certain classes, such as state invariant lemmas. A more detailed description of TAME in its original
form is available in [1]. Some enhancements to TAME in support of the veri�cation of hybrid automata are
described in [3].

Using the recent enhancements to PVS described in Section 2.1, we have simpli�ed the original set of
TAME strategies and provided several new strategies. In addition, progress has been made towards making
both proof scripts and interactive proof goals \literate". Section 3 describes the details of these improvements
to TAME, and Section 4 provides examples of their use.

Although TAME was originally developed for reasoning about LV timed automata, it is equally useful for
non-timed IO automata [4] and easily adapted to many other automaton models. We have begun to apply
TAME to SCR automata (see Section 2.4). For this new application, a slight modi�cation to the TAME
template has proved important for proof e�ciency. Additional strategies that complete many state invariant
proofs totally automatically seem possible. Section 5 presents the results of our initial experiments.

2.4 The SCR Requirements Method and Toolset

The SCR (Software Cost Reduction) requirements method is a formal method for specifying and analyzing
the requirements of safety-critical control systems. Since its introduction in 1980 [10], SCR has been applied
successfully to a wide range of critical systems, including avionics systems, space systems, telephone networks,
and control systems for nuclear power plants. A set of software tools, called SCR* [9, 6, 7], has been
constructed to support the SCR method. In addition to a speci�cation editor for creating a speci�cation
and a dependency graph browser to display the dependencies among the variables in the speci�cation, the
toolset includes an automated consistency checker to detect type errors, missing cases, circular de�nitions,
and other types of application-independent errors, a simulator to allow users to symbolically execute the
speci�cation to ensure that it captures their intent, and an interface to a model checker called Spin [11, 12]
that detects certain safety property violations.

An SCR requirements speci�cation describes both the required system behavior and the system environ-
ment in terms ofmonitored variables, quantities that the system monitors, and controlled variables, quantities

3

that the system controls. To specify the required behavior concisely, SCR speci�cations use two types of
auxiliary variables, mode classes and terms. Mode classes, whose values are called system modes (or simply
modes), capture historical information, whereas terms have very general utility.

SCR requirements speci�cations contain a set of dictionaries and a set of tables. The dictionaries, which
contain the static information in the speci�cation, include a variable dictionary, which lists the name, data
type, and initial value of each variable; the type dictionary, which provides the data type de�nitions; the
constant dictionary, which de�nes the names and values of constants; the speci�cation assertion dictionary,
which contains statements of properties such as state invariants; and the environmental assertion dictionary,
which describes constraints on the behavior of the monitored variables. For every variable other than a
monitored variable, there is a corresponding condition, event, or mode transition table. Each table de�nes
a mathematical function called a table function. For example, an event table describes the (post-transition)
value of a controlled variable or term as a function of a mode and an event. The notation \@T(c)" denotes
an event, de�ned as @T(c) = :c ^ c0, where the unprimed condition c is evaluated in the current state, and
the primed condition c0 is evaluated in the new state. Informally, \@T(c)" means that condition c becomes
true.

To provide formal underpinnings for the SCR speci�cations, a formal model has been developed [9]. In
the SCR model, the system is represented as a state machine that begins execution in some initial state
and then responds to a sequence of input events, where an input event is an event that signals a change in
some monitored variable. In particular, a system � is represented as a 4-tuple, � = (S; S0; E

m; T), where
S is the set of states, S0 � S is the initial state set, Em is the set of input events, and T is a function
that maps an input event and the current state to a new state. The transform T is obtained from an SCR
speci�cation as the composition of the table functions. For T to be well-de�ned, the \direct" dependencies
in the speci�cation of a given variable in the new state on other variables in the new state must de�ne a
partial order. In SCR*, this partial order is veri�ed to exist by the consistency checker, and is represented
in the dependency graph browser as the new state dependency graph.

3 Recent Improvements to TAME

3.1 An Improved Induction Strategy

The induction strategy is the major TAME strategy for proving state invariants. This strategy sets up
an induction proof for a state invariant by breaking the proof up into a base case and induction steps
for the transitions, one for each kind of action. In the case where the invariant involves quanti�cation
over variables other than the automaton state, it is frequently the case that one wants to skolemize these
variables in the inductive conclusion, and instantiate them in the inductive hypothesis with the resulting
skolem constants. After some standard simpli�cation on each branch, the induction strategy incorporates
this skolemize-instantiate step on each induction branch of the proof. It then probes the branch to see
whether a simple decomposition into cases followed by the application of the arithmetic, propositional logic,
and other decision procedures of PVS will complete the proof of that branch|i.e., it checks to see if the
branch is \trivial". If so, the branch is proved; otherwise, the branch is unchanged. The induction strategy
then returns the unproved branches to the user.

The induction strategy was an appropriate candidate for improvement using several of the PVS en-
hancements. Originally, an appropriate variant for each speci�c automaton required external compilation.
Multiple versions were needed when there were state invariant lemmas both with and without quanti�cation
of non-state variables. Standard simpli�cation of the branches expands certain de�nitions, including the
automaton's transition function. However, PVS's proof rule EXPAND, normally used for this purpose, does
not simply expand a de�nition, but does some additional steps that often, though not invariably, produce a
desirable simpli�cation. One case where there may not be a desirable simpli�cation is when the expanded
de�nition contains an IF-THEN-ELSE expression under a quanti�er. In this case, the additional steps result
in lifting the IF-THEN-ELSE to the top level, with the quanti�er appearing in both the THEN and ELSE
branches. When this happens in expanding the transition function in the inductive conclusion, performing
the skolemize-instantiate step is di�cult. Using REWRITE in place of EXPAND was one solution, but not
completely satisfactory because REWRITE, too, comes with baggage, and a resulting loss in e�ciency. In
any case, automated support for the skolemize-instantiate step had to rely on knowing the exact formula
numbers of the inductive conclusion and the inductive hypothesis. Finally, because the induction strat-
egy only produces subgoals for the nontrivial proof branches, it was di�cult to examine a saved proof and
determine the correspondence of branches to cases. Knowing this correspondence is important in several
contexts, including the case when one wants to go back and complete a partial proof. Previously, labeling the
branches was best done interactively using PVS's original, rather primitive, comment facility: incorporating
a comment as an extra argument in an APPLY.

The improved induction strategy, which we call AUTO INDUCT, avoids these problems. It need not be
compiled; rather, it probes the body of the state invariant lemma being proved to retrieve data structures

4

from which the necessary proof steps can be computed. This information includes the list of actions, with
their arguments, that correspond to the transitions of the subject automaton. The new induction strategy
then computes the strategy that previously was compiled externally, and applies it. Part of the computed
strategy is a call to another strategy used in simplifying the proof branches. At the point where this auxiliary
strategy is called, there is enough information in the current proof goal to determine whether and how to
do any coordinated skolemization-instantiation. The auxiliary strategy computes a sequence of steps to
accomplish this, and then applies them.

The improvements in the induction strategy described above rely on the additional documentation and
access functions for the PVS internals. Eliminating the remaining problems in the original induction strategy
required several of the PVS enhancements. The problem with EXPAND was solved by using one of the
new �ner-grained steps that simply expands a de�nition, and does no more. The problem of knowing
the locations of the inductive conclusion and inductive hypothesis was solved by using the new labeling
capabilities in PVS: AUTO INDUCT labels various parts of an induction goal as \inductive-conclusion",
\inductive-hypothesis", \speci�c-precondition", and so on. The auxiliary strategy called by AUTO INDUCT
can then skolemize \inductive-conclusion" and instantiate \inductive-hypothesis". The new comment facility
is used by AUTO INDUCT to automatically label proof branches with their corresponding cases. An example
proof goal with labels and comments is given in Section 4.

3.2 Other Improvements in the TAME Strategy Set

With the combination of tools to access and analyze PVS sequents, formulae, and expressions plus the
enhancements to PVS, we have succeeded in implementing many of the improved or new TAME strategies
discussed in [2]. The resulting TAME strategies are designed for simplicity of use. We list a sample below.
We illustrate the usefulness of most of these examples in Section 4.

� The invariant-lemma strategy for applying previously proved state invariant lemmas in a proof formerly
had two versions; it now has a single version called APPLY INV LEMMA. Its �rst argument is the
name of a state invariant. It checks to see whether its second argument (if any) is a state, and if so,
applies the corresponding state invariant lemma to that state. All remaining arguments except the
state argument (if there is one) are used as instantiations to any top level universal quanti�er in the
invariant lemma. APPLY INV LEMMA also displays the invariant being applied as a comment.

� The precondition-strategy for introducing the explicit form of the precondition for the action of an in-
ductive step into the hypotheses of the current proof goal is now called APPLY SPECIFIC PRECOND.
It now provides two additional services. First, it displays this explicit form of the precondition as a
comment in the proof. Second, if the precondition is a conjunction, APPLY SPECIFIC PRECOND
separates the conjunct conditions into a list, and gives them additional labels of the form speci�c-
precondition part i, where the index i indicates their original position in the conjunction.

� The strategy TIME ETC SIMP, intended to complete the proof in a branch when a human might say
\it is now obvious", has been replaced by the strategy TRY SIMP. TRY SIMP �rst hides formulae
containing quanti�ers, applies TIME ETC SIMP, and if the current subgoal is not proved, reveals the
formulae it hid and applies TIME ETC SIMP again. Experimentation has shown TRY SIMP to be
frequently more e�cient than TIME ETC SIMP, and never measurably less e�cient.

� The strategy USE EPSILON simpli�es the application of the Hilbert �-axiom. We have found
USE EPSILON useful in establishing certain properties of nondeterministic automata (e.g., hybrid
automata in which there are tolerances in the amount of change in some state variables in a time-
passage step; see [3]). Being able to analyze formulae and expressions in the proof goal with respect to
content and type has enabled us to simplify the application of USE EPSILON so that the user need
no longer supply the domain type of the predicate to which the axiom is being applied, nor the full,
sometimes complex, expression representing the predicate. Rather, the user need now only supply a
hint as to which predicate to choose.

� The strategy DISCHARGE HYPOTHESES is new. It removes hypotheses from any implications in
the antecedent of a proof goal that can be deduced from the contents of the goal. While the standard
PVS strategy ASSERT can sometimes be used to this purpose, it does not work if the hypotheses are
of a certain complexity. DISCHARGE HYPOTHESES can be used to avoid unnecessary case splits in
the course of a proof.

Section 5 discusses a few new strategies useful in proving properties of SCR speci�cations.

3.3 Improvements in the Literacy of TAME Proofs

With the current set of TAME strategies, it is possible to maintain meaningful (sometimes multiple) labels
on most if not all of the formulae in a proof goal. We have found labels to be useful not only in the support
of more intelligent strategies, but in the course of an interactive proof.

Labels can serve as reminders of the source of a formula, and therefore aid in determining what point in
reasoning has been reached in the proof, and in choosing the appropriate steps to take next. For example,

5

we have replaced PVS's CASE rule with the TAME rule SUPPOSE. The only di�erence between the two
rules is that SUPPOSE labels the introduced assumption Suppose, and in the companion proof branch in
which the assumption must be proved, Suppose not. This documents the intended purposes of the formulae
introduced.

Labels can also be used to increase proof portability. For example, the PVS proof rule INST (\instantiate")
frequently must specify the formula to instantiate, and previously, this could only be done by giving the
formula number. We note that maintaining unique labels for individual formulae can be important for an
analogous reason.

The current set of TAME strategies also makes liberal use of comments. As noted in Sections 3.1 and 3.2,
our strategy AUTO INDUCT labels proof branches with comments, and the strategies APPLY INV LEMMA
and APPLY SPECIFIC PRECOND introduce comments that spell out the actual facts being introduced.
Several other TAME strategies do this also. This information can be useful interactively in noting how the
facts have been simpli�ed. One place where it is particularly useful in proof scripts is in clarifying the e�ects
of certain later proof steps|e.g., in determining exactly which general fact has been instantiated. Without
also incorporating the sequent at the beginning of each proof branch as a comment, there is not yet enough
information in TAME scripts to completely follow the reasoning in a proof. Exactly how much information
to incorporate into a proof script is an open question, and is largely a matter of taste.

4 Examples

Figure 1 shows an example of how labels are used in induction case proof goals of TAME induction proofs.
Note that the inductive conclusion has been \attened" into three parts.

hhh
lemma_6_1.1 :
;;;Case nu(timeof_action)
{−1,pre-state-reachable}

reachable(prestate)
{−2,inductive-hypothesis}

(((trains_part(basic(prestate))(r_theorem) = P)
& ((gate_part(basic(prestate)) = fully_up) OR (gate_part(basic(prestate)) = going_up)))

=> first(prestate)(enterI(r_theorem)) > now(prestate) + gamma_down)
{−3,general-precondition}

enabled_general(nu(timeof_action), prestate)
{−4,specific-precondition}

enabled_specific(nu(timeof_action), prestate)
{−5,post-state-reachable}

reachable(prestate WITH [now := now(prestate) + timeof_action])
{−6,inductive-conclusion_part_1,inductive-conclusion}

(trains_part(basic(prestate))(r_theorem) = P)
{−7,inductive-conclusion_part_2,inductive-conclusion}

((gate_part(basic(prestate)) = fully_up) OR (gate_part(basic(prestate)) = going_up))
|-------

{1,inductive-conclusion_part_3,inductive-conclusion}
first(prestate)(enterI(r_theorem)) > now(prestate) + timeof_action + gamma_downhhh

Figure 1. Example of a labeled proof subgoal returned by AUTO INDUCT.

The changes in the TAME proof of the subgoal in Figure 1 are a good example of the improvements
now possible in TAME proof scripts. The proof of this subgoal now has only six steps where it previously
had nine. The �rst step, an application of APPLY SPECIFIC PRECOND, results in an expansion and
decomposition of the formula labeled speci�c-precondition into six individually labeled parts and the inclusion
of a corresponding comment into the proof script. The next two steps are calls to APPLY INV LEMMA;
previously one of these steps invoked the special version of the invariant-lemma strategy for universally
quanti�ed invariants. The next step, DISCHARGE HYPOTHESES, now accomplishes simpli�cations that
previously required three steps, two of which relied on formula numbers. Next, the step (INST \speci�c-
precondition part 5" \r theorem") replaces an INST step that required a formula number. The comment
introduced by APPLY SPECIFIC PRECOND allows one to see from the proof script exactly which formula
is instantiated by INST. Finally, the step TRY SIMP now replaces two steps: a HIDE step that relies on a
formula number, and a step TIME ETC SIMP.

5 Integrating TAME with SCR*

Currently, SCR speci�cations de�ne deterministic automata, so their transitions can be represented by a
function. Because this function is computed from many incremental updates in the state variables, proofs

6

that use the function representation for the transitions of an SCR machine are ine�cient. In fact, dramatic
increases in the speed of proofs have resulted from representing transitions by a relation rather than a
function, in contrast with our experience with LV timed automata in [3]. Therefore, we adapted the TAME
template, supporting theory machine, and induction strategy to accomodate this variation.

Translating SCR speci�cations into TAME speci�cations is straightforward. TAME speci�cations are sim-
ply PVS speci�cations with a special structure. Information in the type dictionary, constant dictionary, and
variable dictionary of an SCR speci�cation is translated into PVS type, constant, and variable declarations
and the initial state predicate. The monitored and controlled variables, terms, and mode classes become the
\basic" state variables (there are additional standard state variables reserved for encoding timing informa-
tion). The \actions" of an SCR automaton are input events, which represent some change in a monitored
quantity. Such actions have as a parameter the new value of the monitored quantity. The environmental
assertion dictionary contains all information about constraints on how monitored quantities can change, and
this information is translated into preconditions on the actions. The assertions in the speci�cation assertion
dictionary are translated into invariant lemmas in TAME format. Finally, the de�nition of the transition
relation is obtained using the event, condition, and mode transition tables and the new state dependency
graph, and is represented in terms of \update" functions for variables that are a�ected by a given action
(input event). The update function for a variable is a translation of its table, based upon translations of
predicates and expressions in the table that are indexed numerically in the natural way. This translation
scheme has been automated for a signi�cant subset of the SCR speci�cation language. Figure 3 shows part
of the automated translation of the event table for the state variable (\term") Overridden shown in Fig-
ure 2, and how the corresponding update function for Overridden is used in the de�nition of the transition
relation.

Experimentation with proving state and transition invariants for several example SCR speci�cations
strongly suggests that there exists a uniform strategy that, for typical SCR applications, will su�ce to
prove many invariants automatically. We are continuing experiments aimed at the development of such a
strategy.

Mode Events

High False @T(Pressure = TooLow OR
Pressure = Permitted)

TooLow, @T(Block=On) @T(Pressure = High) OR
Permitted WHEN Reset=Off @T(Reset=On)

Overridden True False

Figure 2. Event table for Overridden.
hh
statepred : TYPE = [states -> bool];
atT(P : statepred, s1,s2 : states):bool = P(s2) AND NOT P(s1);
Overridden_0_0(s1,s2 : states) : bool = FALSE;
Overridden_0_1(s1,s2 : states): bool =
let e0 = (LAMBDA (s : states): Pressure(s) = TooLow OR Pressure(s) = Permitted) in atT(e0, s1, s2);
...
Overridden_assignment_0 (s1, s2 : states) : bool = TRUE;
Overridden_assignment_1 (s1, s2 : states) : bool = FALSE;
update_Overridden(s1,s2 : states) : bool =
IF Pressure(s1) = High
THEN IF Overridden_0_0(s1,s2) THEN Overridden_assignment_0(s1,s2)

ELSIF Overridden_0_1(s1,s2) THEN Overridden_assignment_1(s1,s2)
ELSE Overridden(s1)

ENDIF
ELSIF
...

ELSE Overridden(s1)
ENDIF;

trans(s_old : states, A : actions, s_new : states) : bool =
s_new = CASES A OF Block(Block_value): s_old WITH [basic := basic(s_old) WITH

[Block_part := Block_value,
Overridden_part := update_Overridden(s_old,s_new),
SafetyInjection_part := update_SafetyInjection(s_old,s_new)]],

...
ENDCASES;hh

Figure 3. Fragments of TAME translation of Overridden event table and the transition relation.

7

6 Discussion and Future Plans

Providing an interface such as TAME for a theorem proving system requires several capabilities within, or in
relation to, that system. These include support for user-de�ned strategies or tactics and access to the data
structures and some of the internal analysis tools used by the proof engine. TAME also relies on the term
rewriting facilities in PVS. For some provers, it may be necessary to add capabilities: for PVS, we required
additional low-level proof steps plus labeling and comment facilities.

Capabilities needed to provide what we call �rst-level interface support for a prover were noted in [21].
These include formal languages and parsers for the data structures used in the prover and its outputs,
and a means to communicate changes of state between the prover and the interface. As indicated in the
introduction, we plan to provide �rst-level interface support for TAME and to support the use of TAME
through the SCR* toolset interface. To do so, we will need some additional capabilities along these lines.

With the capabilities we now have, we expect to improve our PVS interface further by providing strategies
for PVS steps that we noted in [2] as potentially useful, e.g., in avoiding unnecessary case splitting. Examples
are strategies for the skolemization and instantiation of embedded quanti�ed formulae. The Lisp code needed
in the strategies for analyzing formulae would almost certainly be simpler to create given access to analysis
tools such as parsers already present in PVS.

Acknowledgments

We wish to thank our colleague Ralph Je�ords for helpful discussions about proof e�ciency and SCR spec-
i�cations, and our colleague Ramesh Bharadwaj for insightful comments on an earlier version of this paper.
We also thank Natarajan Shankar and Sam Owre of SRI International, who implemented the enhancements
to PVS that allowed us to improve TAME.

References

[1] M. Archer and C. Heitmeyer. Mechanical veri�cation of timed automata: A case study. In Proc. 1996 IEEE Real-Time
Technology and Applications Symp. (RTAS'96). IEEE Computer Society Press, 1996.

[2] M. Archer and C. Heitmeyer. Human-style theorem proving using PVS. In E. L. Gunter and A. Felty, editors, Theorem
Proving in Higher Order Logics (TPHOLs'97), volume 1275 of Lect. Notes in Comp. Sci., pages 33{48. Springer-Verlag,
1997.

[3] M. Archer and C. Heitmeyer. Verifying hybrid systemsmodeled as timed automata: A case study. In Hybrid and Real-Time
Systems (HART'97), volume 1201 of Lect. Notes in Comp. Sci., pages 171{185. Springer-Verlag, 1997.

[4] S. J. Garland, N. A. Lynch, and M. Vaziri. IOA: A Language for Specifying, Programming, and Validating Distributed
Systems. Draft. MIT Laboratory for Computer Science, December, 1997.

[5] J. Harrison. A Mizar mode for HOL. In Proc. 9th Intl. Conf. on Theorem Proving in Higher Order Logics (TPHOLs'96),
volume 1125 of Lect. Notes in Comp. Sci., pages 203{220. Springer-Verlag, 1996.

[6] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specifying and analyzing requirements. In Proc.
10th Annual Conf. on Computer Assurance (COMPASS '95), pages 109{122, Gaithersburg, MD, June 1995.

[7] C. Heitmeyer, J. Kirby, and B. Labaw. Tools for formal speci�cation, veri�cation, and validation of requirements. In Proc.
12th Annual Conf. on Computer Assurance (COMPASS '97), Gaithersburg, MD, June 1997.

[8] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal veri�cation of real-time systems.
In Proc., Real-Time Systems Symp., San Juan, Puerto Rico, Dec. 1994.

[9] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Automated consistency checking of requirements speci�cations. ACM
Transactions on Software Engineering and Methodology, 5(3):231{261, April{June 1996.

[10] K. L. Heninger. Specifying software requirements for complex systems: New techniques and their application. IEEE Trans.
Softw. Eng., SE-6(1):2{13, Jan. 1980.

[11] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[12] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Softw. Eng., 23(5):279{295, May 1997.

[13] S. Kalvala. Annotations in formal speci�cations and proofs. Formal Methods in System Design, 5(1/2), 1994.

[14] S. Kalvala. A formulation of TLA in Isabelle. In Higher Order Logic Theorem Proving and Its Applications (HOL'95),
volume 971 of Lect. Notes in Comp. Sci., pages 46{57. Springer-Verlag, 1995.

[15] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lect. Notes in Comp. Sci. Springer-Verlag, 1994.

[16] J. Rushby. Private communication. NRL, Jan. 1997.

[17] N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference manual. Technical report, Computer Science
Lab., SRI Intl., Menlo Park, CA, 1993.

[18] J. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant in PVS. In Third Intern. School and Symp.
on Formal Techniques in Real Time and Fault Tolerant Systems, Lect. Notes in Comp. Sci. 863. Springer-Verlag, 1994.

[19] D. Syme. A new interface for HOL { ideas, issues, and implementation. In Higher Order Logic Theorem Proving and Its
Applications (HOL'95), volume 971 of Lect. Notes in Comp. Sci., pages 324{339. Springer-Verlag, 1995.

[20] L. Th�ery. A proof development system for the HOL theorem prover. In Higher Order Logic Theorem Proving and Its
Applications (HUG'93), volume 780 of Lect. Notes in Comp. Sci., pages 115{128. Springer-Verlag, 1993.

[21] L. Th�ery, Y. Bertot, and G. Kahn. Real theorem provers deserve real user-interfaces. Proc. Fifth ACM SIGSOFT Symp.
on Software Development Environments, Software Engineering Notes, 17(5), 1992.

8

